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Summary. Double perturbation theory is developed for the case where 
relativity is one perturbation and the other perturbation describes a chemically 
interesting observable such as molecular structure, force constant or polariz- 
ability. Relativity is treated according to Rutkowski's nonsingular perturba- 
tion approach. Expressions for four-component and two-component wave- 
functions and for the Hartree-Fock approximation are given. The method is 
applied analytically to the relativistic corrections of  the electric polarizability 
of the H atom, and algebraically to the potential curve of  the H + molecule. 
Second and third order double perturbation interchange relations are numer- 
ically verified. In the present formalism, terms up to third order are needed 
to qualitatively understand the relativistic corrections of  chemical observables. 
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I. Introduction 

Chemistry is governed by the valence electrons. Their behavior is qualitatively 
determined by the screened nuclear charges Zefr and the atomic quantum 
numbers n, 1 and x. For  instance, the valence orbital energy Eva1 may be 
represented by 

r = --  0.5( Zeff/n ) 2 (1.1)  

where (Zeg/n)  is of  order 1 for the valence shells of  all atoms. 
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For  atoms from the lower rows of  the periodic table, relativistic corrections 
significantly modify the nonrelativistic expectation values a nrel. We define the 
total and relative relativistic corrections, A rela and 6r~a, respectively by 

6"ela = A r~la/a "r~l = (a r~t -- a"r~l)/arek (1.2) 

6 re~ depends, to a good approximation only on the unshielded nuclear charge Z 
rather than on Zoer and n, so that we may write 

6 relacore or val ~ const~ �9 (Z/c)  2, ( 1.3) 

where c is the velocity of light (in atomic units c = 1/0t = 137.037) and const~ is 
a parameter mainly depending on the type (quantum number ~:) of  the bond- 
active valence shell, or in chemical terms, on the group number of the atom in 
the periodic table. The physical reason for the unexpectedly large relativistic 
corrections found empirically even for the valence shells has recently been 
explained by Schwarz et al. [1, 2]. 

The basic chemical properties, a, of  molecules are geometrical structure, 
energetic stability, and electromagnetic moments and responses. Let Q be the 
relativistic parameter, i.e. 0 = 0 for a nonrelativistic formalism and e = 1 for a 
relativistic one. Expanding a in a Taylor series of  0, we obtain to lowest orders 

A re la  = (da/do)o + �89 2)0 + " "  ,~ �89 + (da/do), ], (1.4) 

6 ~ela = (d In a)/dO)o + 1 [(d 2 In a/do 2)o + (d In a/do) 0 2] + " "  (1.5) 

where the indices 0 and 1 indicate the value of 0 where the derivatives are taken. 
The chemical properties may be classified as direct expectation values (dipole 
moments, transition moments), as difference properties (bond energy, activation 
energy, ionization potential), or as differential properties (geometric structure, 
force constant, polarizability). The latter ones are defined via derivatives. For  
instance, the geometric parameters 7 (bond lengths R, bond angles/~) are defined 
by dE~d7 = 0. The force constant is k = d2E/dy z, the electric dipole polarizability 

is ~a = dZE/dFz. 
The physical origin of  relativistic corrections to direct and difference proper- 

ties has been discussed in the literature (see, e.g., [1-6]) and seems to be 
understood to some extent. To low order, the relativistic corrections to the 
polarizability ~, force constant k and anharmonicity x are given by 

A'~ct = (d3E/dF 2 dO) + �89 2 de 2) + ' "  ", (1.6) 

A'e~k = (d3E/dy 2 dO) + l(d4E/dY2 dO 2) + ' " ,  (1.7) 

A reiN ~ -  (d4E/dy 3 do) + " "  �9 (1.8) 

For  geometric parameters y we obtain, expanding E up to third order, and 
solving dE/dy = 0 to the appropriate order, 

Ar~ty ,.~ - A /k �9 (1 + xA  /2k2), (1.9) 

where 

a = (d2E/dy dO)o + �89 dO 2)0 + " "  , (1.10) 
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is the slope of the relativistic potential hypersurface at the nonrelativistic 
equilibrium position. 

Relativistic corrections to differential properties have been investigated, both 
numerically (for a literature collection see Pyykk6 [3]) and formally [1, 4, 7, 8]. 
However, the formal analysis has so far only been carried through to second 
order, although it is evident from the numerical work that third order terms 
must not be neglected even at a qualitative level. For instance, the relativistic 
correction to the force constant (Eq. 1.7) turns out to be qualitatively impor- 
tant. Nevertheless, A re~k has not yet been investigated theoretically. One should 
at least achieve a physical understanding of the signs of A r~k. 

The partial derivatives introduced above are related to the energy co- 
efficients E iJ of double perturbation theory. The first perturbation is the pertur- 
bation of the potential due to an external field, F, or to a change of the 
molecular structure, ?. The second one is the relativity, Q. Accordingly, we 
obtain 

A relk = 2(E 2'1 + E 2'2 + "  �9 �9 ), 6reik = ( E  2A + E 2'2 + .  �9 . ) / E  z'~ (1.11) 

and similar expressions for A rely, A relx, etc., and from Eq. (1.9) 

A rel]) = _E1,,/2E2,O. (1 - E2, ' /E 2,~ + E',Z/E ' '  + 0.75. E3,~176 2"~ + , . . ) .  

(1.12) 

In this work we shall determine the double perturbation theory expressions 
up to third order, using Rutkowski's [9] convergent relativistic perturbation 
approach. The general formulae for four-component wavefunctions are derived 
in Sect. 2. In an appendix, explicit formulae are given which use only the upper 
two-component wavefunctions as they are more convenient in numerical calcu- 
lations than the four-component ones. Furthermore, the independent particle 
approximation is introduced, whereby the wavefunctions are represented by 
single determinants of 2-component molecular spinors. 

In Sect. 3, the formalism is applied to analytically calculate the perturbed 
energy and wavefunction for a relativistic hydrogen-like atom in an electric 
field. Literature values obtained with different methods are reproduced. In Sect. 
4, the relativistic changes of the Born-Oppenheimer potential curve of HJ- are 
investigated with the help of an algebraic approximation. Using extended basis 
sets, the double perturbation interchange theorems are numerically verified. 

2. Theory 

2.1. General formalism 

We write the one-electron four-component Dirac equation as 

{h n - E}ql = { - 2 f l ' m e  2 + ~Vc + l(V - E)}r = 0. (2.1) 
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With 1 and 0 being 2 x 2 blocks, we define 

00) (: 
so that 

(2.2) 

]~0 + ~, = 1, flo _ r ,  = ft. (2.2a) 

Following Rutkowski [9] we introduce the perturbation parameter Q: 

{ -2B 'mc2+~pc+~~ (2.3) 

For Q = 1, (2.3) is the relativistic Dirac equation. For Q = 0, it corresponds to the 
nonrelativistic Schr6dinger equation for electrons with spin, written as a system 
of two coupled first-order equations (compare [10, 11]). This can be seen more 
easily, if (2.3) is written in 2 x 2-block form 

V - E  o ~pe ] r~b~+l =0 .  (2.3a) 
otpc o(v  - E o) - 2mc2J bkQ_ 

In conventional relativistic perturbation theory, the four-component description 
is unitarily transformed into a two-component one, and 1/c is used as the 
perturbation parameter. This often causes insurmountable problems in higher 
orders since the two-component wavefunction is not analytic in 1/c [ 11, 12]. Note 
also that the effective mass m/o of the positron states diverges in the nonrelativis- 
tic limit Q = 1372/c2~ 0, i.e. c--* oo. In Rutkowski's approach Eq. (2.3a) [9], the 
parameter 0 modifies the potential coupling and the metric with respect to the 
lower component, so that the influence of  the positron states disappears in the 
nonrelativistic limit, and all orders of  perturbation theory remain finite and 
definite. 

2.2. Double perturbation theory for relativity and a change in the external 
potential for many electron systems 

The Dirac equation for N particles (electrons), i, with 4~V-component function ~b 
reads 

{~[Vg+otipic-2fl~mic2]+~Wij-E}~,=O.i<j (2.4) 

Vi is the external one-particle potential, for instance the electron-nuclear attrac- 
tion in the case of  the Born-Oppenheimer approximation, or an additional field. 
Wij is the effective two-particle interaction, for instance the "no-pair projected" 
electron interaction including the Breit terms. 

Generalizing the approach of  Jankowski and Rutkowski [13], we introduce 
the many-particle generalizations of  flo and fl' which are needed in the many- 
particle equivalent of  Eq. (2.3): 
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N 

, o  = t~o. f l o . . ,  f lo  = l - I , ~  
J 

N 
~ ~ o . .  o o . . . ~ g = i l f l y  = - f l , - , f l , + i  

j r  

N 

B ~  FI f o  
k ~ ( i d )  

(2.5) 

N N 
+ 0 0 P 

. . . .  B i f l  i BI = Z fl ~ " flO-- lflifli-F l " E 
i i 

N N 
RO R / R O  ~ I  . . . . . . . . .  Z rio. flo._,flo+, , ' : -  ,,':,'J+ , f i g =  Z B,:flj~ 

j # i  j ~ i  

etc. 

N N 
B2 Z f l ~ 1 7 6  , o  . o , o  . = ,fl:fl:+ . .  ~ o  = Z RoR'R' I f l i  f l i +  1 " "  f l j -  - - q r i r j  

i < j  j > i  

B N=,81" f l ;"" fl~v 

Furthermore, we expand the one-particle potential as 
o o  N 

V; = ~ 7 " "  Vf, V P = ~  V,e, (2.6) 
p i 

and the total energy and wavefunction as 

E : Z o r .  liP' Ep'r, 0 = 2 o r "  ])P" ~p , r .  ( 2 . 7 )  
r,p r,p 

We may write the operator of (2.4) by analogy with (2.6) as 

H --  E = ~ O" 7 p" H p'r - -  E �9 B r , (2.8) 

where 

H~176 a~/"Bb, (2 .%) 
i i i < j  s 

H p'r = ~" V f .  B r for p > 0. (2.9b) 
i 

Gq stands for the electromagnetic electron-electron interaction (i.e. Coulomb 
plus higher order terms). For example G ~  �9 o o fl~fl: is the Coulomb 
interaction, and 

ab = •  . ( f l% + ~;flo) ~, "=J (=, ""u)(=+ ""u) 
rij 2r u 2r 3 

is the first order term originating from Coulomb plus Breit interaction. 
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Combining Eqs. (2.4) to (2.9), we obtain the following hierarchy of equations: 

(Ho,o _ e o , o .  B o ) .  qjo,o = 0, (2 .00)  

P 
E ( Hq'O - -  E q ' ~  B ~  " ~ I p - q ' ~  - 0, (2 .po)  

q=O 

E Uq's  - -  g q ' t "  B s  --t  . ft,]p-- q . . . .  ~- O. (2 .pr)  
q,s~O t=o  

Equation (2.00) is equivalent to the nonrelativistic Schr6dinger equation (Q = 0) 
with unperturbed potential (? = 0). Forming scalar products of  Eqs. (2.pr) with 
~b ~176 and with ~k r and then carrying out a sequence of  straightforward 
manipulations in the sense of the double perturbation interchange concept, we 
obtain the following expressions for the perturbation energies: 

E ',~ = <00lnl,~ > (2.10) 

E ~ = <OOIH ~ - E ~176 B '  100) (2.01) 

The second order energies consist of  two terms: 

E 2,~ = <OOIH=,~ + <OOIH l,~ - E 1,~ B ~  

E1,1 .= < o 0 1 n  1,1 --  E 1,0. a l l O 0 >  

+ 2 Re<001n ''~ - E ~'~ B~ (2.11) 
or  
+ 2 Re<00IH ~ - E ~ B ~ -- E ~176 B'I10> 

E ~ = < 0 0 I H  ~ - E ~  B '  - E ~176 B2100> 

+ <00[H ~ - E ~ B ~ - E ~176 B'  !o1> (2.02) 

The pure third order energies consist of three terms, and the mixed ones of five 
terms: 

E3,O = <001n3,oloo > + <OOIH 2,~ - E 2,~ B ~ 10> (2.30) 

+ < 0 0 i n  l'~ -- Ei,O. BOl20> 

o r  

<oolw,oloo> + 2 Re<001H~'~ E ~'~ B~ 

+ <I01H 1,0 - El, 0. e~ 10> 

E 2,~ = <00IH z' - E 2'~ B~I00) 

+ <0ol H 2 , o -  E2,O. BOlol> 

"Jr- < 0 0 I H  1'1 - -  E 1'1" BO --  E l ' ~  n l  I10> 

+ <0OIH ~,~ _ E,,O. Bo111>, 

+ <OOlHO, , - g ~ B ~  g ~176 B '  [20> 
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o r  

= Ool / - /2 ,1  _ e 2 , o .  8 1 1 o o )  

+ 2 R e < 0 0 [ H  2'~ - E 2'~ �9 B ~  

+ 2 R e < 0 0 [ n ' "  - E u 0 o  _ E, ,O.  8 1 1 1 0 )  

+ 2 R e < 1 0 [ H  1'~ - E 1'~ B~ 

+ <10[HO,1 _ EO,1. B o _ EO, o �9 B1[ 10> (2.21) 

E , ,  z = < 0 0 I n  1,z - E u . 81  _ E, ,O.  82100>  

+ < 0 0 [ H  1 ' 1 -  E LI �9 B o _  El ,O.  B ' [O1 ) 

+ <001HO,2 _ E O , 2 . 8  o + EO, ' �9 81  - E o,o. 8 2 1 1 0 )  

+ < 0 0 [ H  ~  - -  EO,1.  B o _ EO,O. 8 1 1 1 1 )  

-q- ( 0 0 I n  1'0 - -  E l ,  0 �9 8o102> 
o r  
~--- ( 0 0 I H  1,2 - -  E l ,  1 . B 1 - -  E l ,  0 . 8 2 1 0 0 )  

+ 2 Re<00IH ~ -- E ~ B ~ -- E ~  B' - E ~176 B21 I0) 

+ 2 R e < 0 0 I H  ''1 - E 1'1" B ~ - e ' ~  B 1[01) 

+ 2 Re<011H~ - E ~ B ~ - E ~176 BII I0> 

+ < 0 1 1 H ' ' ~  E ' ' 0 "  B ~  (2.12) 

EO,3 = < 0 0 [ H  ~ - EO,: .  B 1 _ EO,1. B 2 _ EO,O. B3100)  

+ 2 R e < 0 0 [ H  ~ - E ~ B ~ - e ~  B 1 - E ~176 8 2 1 0 1 )  

+ < 0 1 1 H  ~ - E ~  8 ~ - g ~176 B '  101> (2 .03)  

T h e  h ighe r  o r d e r  energ ies  are  even  m o r e  c o m p l i c a t e d :  

E 3 , 1 =  < 0 0 1 H  3 , ' -  E 3'~ 811oo> 

+ 2 R e < 0 0 [ H  ~ ' ~  E ~ ' ~  8 ~  

+ 2 R e < 0 0 [ H  2'1 - E 2 ' ' '  B ~ - E 2'~ B'110> 
+ 2 Re<011H z'~ - E 2"~ B~ I0) 

-4- ( 1 0 [ H  1'1 - E 1,1- B ~ - E 1,~ B '  [ 10)  

+ 2 R e { < 1 0 1 H  1'~ - E 1'~ B~ 
+ <00[H 2 '~  E e ,  o �9 Bo111>} 

or  

+ 2 Re{<00l HI'I - E ''1" B ~ - E I'~ B']20) 

q- ( 1 0 [ H  ~ -- E ~ B ~ -- E ~176 B'[20> 
+ <01IHI, o - E ',o �9 B~ (2.31) 
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etc. 

E2,  2 _D < 0 0 I n  2,2 - g2,1 . B 1 _ E2,  0 . n 2 1 0 0 >  

+ 2 R e ( 0 0 I H  2,' - E 2,'. B ~ -- E 2,~ B 1101) 

+ 2 R e ( 0 0 l n  1,2 - E L2. B ~ - E ' " .  n ~ - E L~ n2[ 10) 

+ 2 Re(01 I n  1'1 - -  g 1'1. g 0 - g 1'0. n '  110> 

+ <011H 2,~ - E 2,~ B~ 

+ <lOl~/o,= eo,~. ~ o  EO,,. B ' - e ~ 1 7 6  Ilo> 

+ <11 I H  o,o - e o.o �9 B~  

+ 2 Re{<011H ~ - E ~  B ~  E ~176 B ~[20> 

+ ( 0 0 I H  ~ - E ~ n ~ - E ~ B '  - E ~176 B2120>} 
o r  

+ 2 Re{(10[H 1,~ - E I'~ B~ 

+ <0OIH 2,~ E2'~ �9 a~ } (2.22) 

Up to third order, i.e. for E 3'~ E 2'1, E 1'2 E ~ first order functions are 
sufficient, whereas for E a'l, ~2,0 or ~1,1; and for E 2'2, ~k 1'1, ~k 2'~ or ~1,1, ~0,2 are 
needed, respectively. Further equivalent expressions can be derived for the third 
and higher order energies which are however simpler than the ones given. 

For  numerical calculations it is more convenient to work with the upper 
component  functions only. The corresponding expressions, which were obtained 
by a tedious elimination process, are given in the Appendix. We note that no 
divergencies arise in the present approach. 

3. First application using an analytic approach: relativistic stark effect 
of hydrogenlike ions 

3.1. Perturbation energy 

A simple example for the application of  these formulae is the relativistic 
correction to the electric polarizability of  hydrogen-like atoms, which can be 
solved by purely analytic methods. The appropriate Hamiltonians, as defined in 
Eq. (2.9), are given in atomic units by 

H ~176 = - 2 f l ' c  z + atpe - f lo.  Z / r ,  EO,OB o = _ f l o .  Z2/2,  (3.1a) 

H ~ = - f l ' .  Z / r ,  E~176 ' = - - f l ' .  ZZ/2, (3.1b) 

Hl '~  = f l ~  H 1"1 = f l ' . F . z ,  (3.1c) 

where Z is the nuclear charge, and F is the external field strength in the direction 
of  coordinate z. The well-known nonrelativistic polarizability ~ is 

= - 2E 2,~ = 4.5/Z 4. (3.2) 
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The lowest order relativistic correction, according to Eq. (1.6), is 

A rel(~ = _ _  2E 2,~. 

We evaluate E 2'1 as given in Eqs. (2.21, A.21, B.21), so we need 

cp~_ ~ = x / ~  " e - Z r  " sl /2,  

q~o,o = _ i ~ / - ~ / c  . e - z r  "ni l2 ,  

~o~ 1 = -x//Z-5/c 2" I n r .  e - Z r . s m ,  

and 
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(3.3) 

(3.4a) 

(3.4b) 

(3.4c) 

q~ ~o = _ x / ~ / 3 Z  3 . rZ . ( Z /r  + Z Z / 2 ) (  x / ~ p 3 / z  _ x / ~ P , / 2 )  " e -  Z' ,  (3.5a) 

q) ~o = _ i l x / ~  . r 2 . {(Z2/6 _ Zl3r - l l r2 )  �9 s,/2 

- x / ~ ( Z 2 1 6  + Z I 6 r )  " d3/2} "e -z r  (3.5b) 

[9, 14]. The final result of the analytical integrations of (A.21) is 

E2,1= (~o~176176176 

+ 2<~o~ Iz ko ~> 

+ 2< Wlzl o~ 

( 9  25 3 17 4 3 \ / 2 2 +  ~ /  
16 8 1 9 ~ + - 6 4 / I  Z c  

= 7 / ( 3 Z 2 c 2 ) .  (3.6) 

This yields to first order 

A r%t = --  1 4 / ( 3 Z 2 c 2 ) .  (3.7) 

The relative relativistic correction to first order, 

6 relct = - (28/27)" ( Z / c )  2, (3.8) 

depends on ( Z / c )  2, as do the relative relativistic corrections of most expectation 
values. 

Equations (3.7, 8) have already been obtained by other authors [15-20], 
using different approaches. 

3.2. P e r t u r b a t i o n  f u n c t i o n  

The next higher relativistic term is E 2'2. According to Eq. (2.22), the lowest order 
mixed perturbation function q~1,1 is needed in addition to the nonrelativistic 
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function q~2.o. We will here derive an explicit expression for ~o 1,1. The explicit 
equation reads 

[z2/2-z/r 
a~ -2c2JL~'J 

=[00 :]r  ol 0 lr  ol 
L~o~176 L0 0J L~oO_,,j- Z~/2 - Z l r J  Lo L'oj" (3.9) 

Inserting (3.4) and (3.5) and eliminating ~o ~ leads to 

(p2/2  -- Z / r  + ZE/2)tp ~_1 

= l / c = x / / ] ~ { -  x / ~ ( Z  3 - ZEI2r - Z I r  2) e - z , .  ( w / ~ . p 3 / 2  + x / ~ ' P , / z )  

+ (3Z4r -- 7Z3/2  - 2Z2 / r  - Z / r  2 + 2ZZr  In r) e-Zr 

x ( x / ~  "P3/2 - x / / - ~  "P,/2)}. (3.10) 

Subsituting 

~0 ~1 = X / ~ 1 2 C  4 . r"  e - zr{ --fl (2Zr)" x/~[  x / f i -~ .p3/2  + % / ~  "Pl/2] 

+ f 2 ( 2 Z r )  " [ x / ~ "  Pa/z -- x / ~ "  P m ] }  (3.11) 

yields the following equation for f :  

(x  . dE/dx 2 + (4 - x)  �9 d / d x  - 1)f = -~o i (3.12) 

with 

q~l = 1 - 1/x - 4 / x  2, (3.13) 

q~2 = 1.5x - 3.5 - 4 / x  - -  4 / x  2 -Jr" x " l n ( x / 2 Z )  (3.14) 

where x = 2Zr.  Taking into account that the differential equation for the 
Laguerre polynomials reads 

( x "  d2/dx  2 + (k  + 1 - x)  �9 d / d x  + n)Lkn = 0, (3.15) 

we note that the polynomials L 3 are the eigenfunctions of the operator on the left 
hand side of Eq. (3.12): 

(x  " d2/dx  2 + (4 - x )  �9 d / d x  - 1)L~ = - ( n  + 1)L 3. (3.16) 

Therefore it is natural to expand f and 4o i in terms of these polynomials: 

(Pi = ~ c(~ ~  L3, (3.17) 
# t = O  

f = ~ c(,,O/(n + 1)" L 3. (3.18) 
n = 0  

The expansion coefficients c(~ ~ can be obtained with the help of the generating 
function W, 

W ( x ,  t) = e - xt/(1 -- t ) / (  1 -- t) 4, (3.19) 
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namely: 

fo c~ i) �9 (n + 3)! /nt  . t" = dx  �9 x 3.  e - x  . W ( x ,  t) �9 ( ~ i ( x ) .  

n=0  

The evaluation of the integral yields 

(3.20) 

c~ O" (n + 3) .  [c~ ~  (n + 2)2/(n + 1) _ ~,+'~(i) l �9 (n + 4)1. 

(3.24) 

e O)=0,  c ~  f o r n > 0 ;  (3.21) 

e ( o 2 ) = 5 3 / 6 - 4 6 ,  e ] Z ) = - 2 1 / 4 + 6 ,  6 = l n 2 Z + y ,  

e(, 2 ) = - 4 . [ ( n - 1 ) . n . ( n + 3 ) - 6 ] ' ( n - 2 ) ! / ( n + 3 ) !  f o r n > l .  (3.22) 

Here y is the Euler constant, y = 0.577 215 664 . . . .  
We are now in the position to calculate the norm of  the perturbation function 

~0 1,1: 

(q~ 1,1 [(p 1,1) = 211 + 12 (3 .23)  

with 

Ii = 1 / (24Z2(2c )  4) �9 
n=O 

The evaluation of the sum yields 

I1 = 1 / (96Z2c  4) �9 ~ (2n + 3)(7n 2 + 8n + 7)/(n + 1)3(n + 2)2(n + 3) 
n = l  

3.3614 x 10-3/Z2c 4 (3.25) 

12 = 1 / (384Z2c  4) �9 {47399/24 -- 6 �9 4177/3 + 258" 62 

+ ~ 16(n 4 + 6n 3 + n 2 -- 32n -- 30)(n(n -- 1)(n + 3) -- 6)(n -- 2)! 2 
n=2  

+ (n + 3)!(n + 2)!(n + 1)} 

(5.14312 -- 3.625876 -- 0.6718862)/(Z2e4). (3.26) 

The use of the present technique in the solution of the higher order perturbation 
equations and in the evaluation of the appropriate mixed perturbation energies 
will be presented in a subsequent paper [21]. We here present just the final result 
for the relative second order relativistic correction: 

62.rel~ = _ 0.1175" ( Z / c )  4 (3.27) 

4. Second application using an algebraic approach: relativistic change 
of the H2 + potential curve 

4.I .  Per turba t ions  energies  

The formulae of  the Appendix and Eq. (1.12) have been used to investigate the 
relativistic changes of  the Born-Oppenheimer  potential curve of  H + . Using an 
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optimized floating Gaussian lobe basis set o f  27 functions, we obtained the 
numerical  results given in Table 1. 

Rather  large basis sets are needed to obtain good  numerical agreement 
between the different expression for  the mixed per turbat ion energies (compare  
the data  for E 1'1, E 2,1 and E L2 in Table 1). The same is also true in the 
f ramework  o f  the relativistic pseudopotent ial  approach  [28]. We note that  the 
numerical problems with the double per turbat ion interchange theorem are 
similar to those in a number  o f  other  situations: the H e l l m a n n - F e y n m a n  
theorem, the calculation o f  dipole transit ion moments  by the length and velocity 
formulae,  the calculation o f  dia- and paramagnet ic  contr ibutions to magnetic 
properties, and the determinat ion o f  nonadiabat ic  coupling elements. 

With regards to the force constant ,  we note the significant relativistic increase 
(see E 2,1 and 6 lk in the table; previous literature values do no t  agree well with 
the present ones). One may  speculate that  6k is in general o f  the order  o f  
10. ( Z / c )  2, thus becoming qualitatively impor tan t  for  heavier systems. In  the 
future we shall investigate in more  detail the physical origin o f  the empirical 
result that  the relativistic i n c r e a s e  in force constants  is frequent and large [3], 
even in cases where the bond  energy is relativistically decreased [29, 30]. 

With regards to the bond  length, the leading relativistic correction is 
d 1R = - 0 . 5 E I ' I / E  2'~ As has been discussed in some detail by Schwarz [1, 8], 
E L1 should be positive in mos t  cases, so that  A ~R is usually negative (relativistic 
bond  length contraction).  According to Eq. (1.12), E 1,2, E 2,1 and E 3'~ contr ibute 
to the second order  relativistic bond  length change A 2R. The most  significant 
term is the one propor t iona l  to E 1'~ �9 E2"~/(E2"~ 2. That  is, the relativistic change 
o f  the force constant  (E 2'1) is more  impor tan t  than both  the change o f  the 

Table 1. Perturbation energies for H + in a.u. 

This work Some literature values 

R~ r 1.997192 
E ~176 -- 0.6026343 
E l'~ 0 
E ~ �9 c 2 -0.138531 (-0.138330) a 
E 2,~ 0.0514503 
E 1,1 �9 c 2 0.07175 __+ 0.00003 
E ~ c 4 - 0.0403942 
E 3,~ --0.0436321 
E 2,1 �9 c 2 0.70218 _+ 0.00003 
E 1,2- c 4 --0.0024 _ 0.0001 
E ~ �9 c 6 --0.0278344 
k nr O. 1029 
6 lk �9 c 2 + 13.648 
d 1R �9 c 2 -0.6965 
A2R/A1R �9 c 2 -14.6 
ADE �9 c 2 --0.01352 

1.997193 [22]; 1.9972 [25] 
-0.6026342 [22, 23, 24] 

-0.13832 [22, 23]; a -0.13828 [24]; a -0.1386 [27]" 
0.0515 [22]; 0.05141 [25] 
0.076 [27] 

-0.0399 [24]; a -0.0417 [23] 
-0.057 [25] 

0.4 [22]; -0.06 [271 

-0.0283 [24]; a -0.0286 [23] 
0.1028 [25]; 0.1030 [22]; 0.10307 [26] 
8 [22]; - 1  [26] 

-0.706 [221; -0.6 [26] 

-0.0133 [22, 23] 

a These values refer to R = 2; our results corroborate [22-24], but not [27] 
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nonrelativistic force constant with internuclear distance (nonrelativistic anhar- 
monicity, E3'~ and the second order relativistic change of the slope of the 
potential curve, E ''2 (compare Eq. 1.12): 

( _ E 1 , 1/2E2,O)( _ E 2,1/EZ,O)( E 1,2/E 1,1)( 3E 3,0E1, ,/4E2,OE2,O) 

A R ~ - 0.6972 �9 ( 1 - 13.652 - 0,0342 - 0.8872). (4.1) 

It will be interesting to investigate whether this finding on H~-(2 = 1/c 2) can be 
generalized to other molecules. In any case, one gets the impression that for 
higher nuclear charges, where 2 = Z2/c 2 is no longer small compared with 1, the 
second order relativistic term E 1'2 may become of qualitative importance in 
addition to E 2J. Even the second order relativistic change of the force constant, 
E 2'2, which is a fourth-order perturbation energy that cor rec t s  E 2,1, may turn out 
to be necessary in order to understand AR qualitatively for large Z values. 

4.2. Interchange relations 

In order to understand the lowest order relativistic bond length change, 

AR ,,~ - (dErel/dR) / k  rel (4.2) 

in physical terms, we need to understand the two terms (dErel/dR) "~ E l ' l ,  and 
k re~. According to Eq. (A.11) we may express E ' "  in two different ways: 

E LI = (tp~176 p �9 OV / OR "  ~plq)~176 + < 0~176 12 o~ (4.3) 

or  

E ' "  = (r176176 p �9 OV/OR. opl~o~)/4c 2 (4.4) 

+<q,~176 v ,,p e ~176 p2-Zc2eO, l12 ~176 . . . .  o~ + / R ) / 2 e  

Here, only upper two-component spinors have been used, so that there is some 
similarity to the Pauli approach. The first term in both Eq. (4.3) and Eq. (4.4) 
is the expectation value of the bond length change of Rutkowski's relativistic first 
order operator. At R = R e 

r . OV/OR . r = a/OR.  (~p[V - E]~p]. (4.5) 

As has recently been explained by Schwarz ([ 1], Sect. III, 1.1.B), this term should, 
in general, be negative in the Pauli approach, i.e. bond expanding. This is because 
the repulsive Darwin potential becomes more important for shorter bond lengths 
as the electron density of bonding orbitals is in general higher between the nuclei 
than on the "backside" of the atoms. Indeed, we obtain in the present case 

(O(~p V~p)/4 OR ) = - 0.09225 (4.6) 

In the quasirelativistic pseudopotential approach, the corresponding term is often 
negative too (CoUignon [28]), while in the Dirac approach 02HO/OR Oc is zero 
(for details see [1, 8]). 
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If  we prefer scheme (4.3), we have to add to (4.6) the Hellmann-Feynman- 
force, d V/OR, exerted by the upper component's contribution of the relativistic 
first order density change, 2. ~0~ ~ q~ .  Relativistic molecular orbital contraction 
will in most caases cause bond length contraction [1, 8]. Indeed, we obtain in the 
present case 

(q~~176 [qg~)" 2c 2 = +0.16402 (4.7) 

So, in scheme (4.3) a total bond length contraction results because the bond- 
contracting Hellmann-Feynman force of the relativistically contracted charge 
distribution, 2- q~0+o, q~ 01, overweights the bond expanding action of the relativis- 
tic modification of the force operator, ~p(OV/OR)ap/4c 2. The latter term is 
related to the fact that the electron's position of charge and position of mass are 
different observables and are represented by non-communting operators [6, 31]. 

Snijders and Pykk6 [32] have advocated using the alternative scheme (4.4). 
There we need three additional terms, obtained form the bond length change of 
the density, 

Q'= Oo/OR ,~ 2 . q~~176 Oq)~176 = 2 .  q~:o. ~o ~;o. (4.8) 

The first contribution to the second term of Eq. (4.4) is large and positive, as to 
be expected, but is strongly "renormalized" with respect to the energy by the 
other two contributions: 

< Q ' l ~ p V ~ p / 4 >  - +0.57711 

-E~176 -0.26116 

-c2E~ -0.15198 

= +0.16397 

(4.9) 

(4.10) 

(4.11) 

The 0.03% difference between the value of (4.7) and the sum of (4.9) to (4.11) 
is due to basis set truncation. We have the general experience that the double 
perturbation interchange relations are numerically very sensitive. 

Summarizing, E 1,1 is a sum of terms with different signs, the sign and 
magnitude of its total value being physically more or less evident, depending on 
whether scheme (4.3) or (4.4) in chosen. The validity of the relativistic double 
perturbation interchange theorem has been numerically verified for the first time. 

Finally, we discuss the third order term E 2,1, determining A re~k to first order 
and, thereby, A relR to second order. Assuming that we have physically under- 
stood the value of the nonrelativistic force constant 

knrel - ~ -  2E2,0 = + 0.60709 - 0.50418 = 0.10290, (4.12) 

which is also a difference of two opposing contributions, we would like to 
understand its rather large relativistic correction 

h relk ~,~ 2 E  2'1. (4 .13)  

However, this goal seems hardly achievable, since E 2J consists of many rather 
large terms of different sign. This holds both for the straight forward 
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perturbation expression, symbolically written as 

E 2,' = <00121100> + <00120101> + <<00111110> + <00L10111> + <00101120> 

= 0.090 + 1.609 + 0.129 - 2.144 + 1.018 

= 0.702 

(4.14) 

and also, if we eliminate the second order functions I l l )  and 120), 

E =,1 = <00121100> + 2<00120101> + 2<00111110> + 2<10110101 > + <10101110> 

= 0.090 + 3.219 + 0.257 - 1.183 - 1.681 

= 0.702 

(4.15) 

Here the central symbols l iJl stand for H ~j minus the E �9 B terms, as given in Eq. 
(2.21). 

5. Summary 

In order to investigate relativistic corrections of chemically interesting observ- 
ables, at least third order perturbation theory is needed. Using Rutkowski's 
convergent relativistic perturbation approach, the appropriate double perturba- 
tion formulae have been developed. The expressions are given in terms of 
four-component wavefunctions in Sect. 2, in terms of the upper two-component 
functions in Appendix A, and in terms of two-component orbitals within the 
framework of the single particle approximation in Appendix B. 

The formalism has first been tested analytically for the case of the relativistic 
correction of the electric dipole polarizability of hydrogen-like ions (Sect. 3). The 
perturbation functions up to second order, including (~1,1 are given. ~o 1,1 is 
normalizable, as it should be. The perturbation energies E 2,1 and E 2'2 are 
consistent with results from the literature obtained in different ways. Finally the 
formalism has been applied to H + in a Gaussian basis (Sect. 4), using variation 
perturbation theory as developed by Rutkowski and Rutkowska [24]. 

There are two general goals, namely to calculate numerical values, and to 
understand their physical origin. While the first goal has been achieved, the 
second goal seems only achievable for first and second order effects. 

If  we are interested in relativistic changes of structural parameters we first 
need E l'l of Eq. (1.12) which is, however, even qualitatively only sufficient for 
light systems. Only one of the first order densities is needed, either 
0 ~ 1 7 6 1 7 6  ~ or Q l ~ 1 7 6 1 7 6 1 7 6  (see Eqs. 2.11, A.11). The formal 
analysis of E i'm [8] has already made evident that a physical understanding 
cannot be gained without the detailed analysis of numerical results on typical 
molecular examples. This holds even more for the perturbation energies E 2'1 and 
E ~'2, where both QOl and QlO and also second order densities are needed. 
However, by introducing interchange relations, one can get by with first order 
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wavefunctions only. The interchange relations have been verified numerically to 
high accuracy. 

The most important higher order term in the present context is E 2'1, the 
first-order relativistic change of force constant. For  heavy systems, E 1'2 (relativis- 
tic second-order change of  slope of  the potential curve), E 3'~ (anharmonicity) 
a n d  E 2'2 (relativistic second-order change of  force constant) are also needed for 
a qualitative understanding of the relativistic changes of  molecular structure. 

Reliable numerical results for many-electron systems can only be obtained, if 
electron interaction is also treated appropriately. In order to "understand" the 
influence of  correlation on the relativistic changes of  chemical properties, triple 
perturbation theory is needed. Preliminary results, which are not reported here, 
do not look very promising if simple explanations are looked for. 
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Appendix 

A. Reformulation in terms of the upper two-component functions 

In the following, the bras and kets refer only to the 2 N upper components with 
respect to all electrons of  the N-electron Dirac wavefunction. 

E ~ = (OOIR ~ + T '  IO0) (A.O1) 

E 1'0 -- <001V 1100> (A.lO) 

e 2,~ = <001V2100> + (001V 1 - El,~ 110) ( i . 20 )  

E', '  = <OOIR'" Ioo> 

+ 2  Re(001V' - E"~ (A.11) 
o r  

+ 2  Re<00IR~ + Z ' - E ~  10> 

EO.2 = (00lRO,2 + co,2 + ao,:  + 3T 2 _ To,,go,, 100> 

-3!- <00JR 0'1 -~- T 1 -- g 0'1101> (A.02) 

E ~.~ = <001V~[00> + <10[ V' - E"~ 10> 

+ 2 Re<00[ V 2 - E2'~ 10> (A.30) 

E2,1 ~_ <00JR 2,1100> 

+ 2 R e < 0 0 1 V  2 - g2'~  + 2 R e < 0 0 I R  a'l - e ,'l lO> 
+2Re<IOIV1-E',~176 + T1-E~ (A.21) 
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E ''2 = <10l S1'2 -4- p,,2 -4- Q ,,2 _ TO, lE,,, 1 0 0 >  

+ 2 Re<00IR 1'1 - E " '  Io1> 
+ 2 Re(00IR ~ + po,2 + QO,2 + 3T 2 _ TO,,EO,1 _ EO.2110> 

+ 2 Re<011R ~ + T '  - E~ 

+ <Oll v '  - E ' ,~  (A.12) 

Here the following abbreviations are used 

N 
T 0'1 = ~ p 2 / 4 m 2 c 2  ( A . 1 )  

i 

N 
T 1 )-' 2 2  32  = P i P j / 8 m  c (A.2) 

i # j  

N 
T2 E 2 2 2  54  = p i p j p k / 6 4 m  c (A.3) 

i ~ . j # k  

N 

R pr = ~ 6 iP i (V  p - EP,~ (A.4) 
i 

N 
pp.2 = ~ (p2 . o , p , ( V  p - EP'~ + 6ip,(V p - EP'~ �9 pE) /16m3c  4 (A.5) 

i ~ j  

N 
Op,2 = ~ (6jpj �9 o i p , ( V  p - EP'~ �9 6 j p j ) / 3 2 m 3 c  4 (A.6) 

i # j  

N 
S1'2  = E (TiPi [( V1 - -  E l ' 0 ) (  V 0 _ EO,O)] (Tip i / 4 m  5c4. ( A . 7 )  

i 

Since coincident indices do not appear in Eqs. (A.2), (A.3), (A.5), (A.6), no 
divergent terms arise, contrary to the Pau l i -Fo ldy-Wouthuysen  approach 
[11,121. 

B. Independent  particle approximat ion  

The 2N-component function of  Sect. 3 is now approximated by a Slater determi- 
nant of upper 2-component spinors tp+; 

100> = I~p ~ l . -"  ~p~ I. (B.1) 

The effective one-electron potential is chosen as 

p = v +  w,-  le,>Ew/j<e;l=E ;- (n2) 
i �9 j i 

The IV,- and W o. are the electron interaction operators and integrals, respectively, 
including the exchange terms. For  choice (B.2) of  the effective potential I 7, the 
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total energy is the sum of occupied orbital energies: 
N 

E ~176 = ~ Ei~176 (B.00) 
i 

We introduce the approximate relativistic r-th order lower 2-component spinors 

qJ ~ ~ = ,ip4o ~ ~ /2c  (B.3) 

and the "orthogonalized" functions )~ 

With these definitions, the perturbation energies can be expressed as 
N 

E~ = Z <<R~ I -o _oo V - e i  [~o~,> (8.01) 
i 

N 

E~ = Z {<4 ~176176 l( p~ -- E~)2i (P~176 > 
i 

_ <q~O+Olp~l<pO+O>Eo,12 + <<po_o 117 o_ 40 i,,#,zo+, >}/2d 
N 

-- E ~176 2 oo oo oo Z <,~176176 + J )I 14o-j><r (B.02) 

N 

E"~ = Z <<p~176 I ~' I<p +~ (B.10)  
/ 

N 

E2'~ = Z {<<p~176 I ~1 iz,+o > + <~o+o 117~1 ~oo+oi>}. (B.20) 
i 

The higher-order terms are given by rather lengthy expressions: 
N N 

�9 <~ +, Iv  I~o + ,>0 -~1~- ;>  E1'i =Z <q'~176176176176 Y, oo "l 00 00 00 

i i~- j  

N 

v - ~ ,  Iz'_~ + 2 Re Z <~o~,1 - o  _oo 
i 

0 r  
N 

+ 2 Re ~ <(p ~176 117' Iz~ (B.11) 
i 

In the following, only one of  the equivalent forms is given. 
N 

E1"2 = 2 {<~(0+1i 1171 _ e)o 1;(o+,.> + 2 Re<g~ �9 117' -- el~ I (P~176 
i 

+ 2 Re<tp ~176 1(17 o - E7~ 1 - -  E} 0) I (p ~176 2 - < (p o_o IE, , I  I f P ~ i >  } 

N 
00 171 00 Z {<~, +,l I~+,>  <z~176 

i # j  

+ <40~ ~ 117' - E :o I ~o_o,><o% I ~%> 
- -  <(~0_0 i 1171 -- E J0 [ ~O 0_Oj ><~O 0_0S 1 40 % >} 
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+ 

N 

E 2 ' l  = Z 
i 

N 
__  00 2 I0 2 + 2 R e  Z {<+~176176 el ) Iz_+>/2c 

i 

E00  . 10 \ +<z~ ~  ; Iz- i , ,  
�9 ' O1 I 01 10 E01 ^ 0 0  X )  - ~.z+;IEi Izl+~ <z- ;  i ,e- i /~ 

N 
- E ~176 2 oo oo 17' +2Re Z {<+~176176 (~oo+ +)/ l+-J><++Jl I++~,>/2c2 

--0 00 00 I0 00 - <+~il  v - ~ i  I + -~><z -~ l+ - ,>  
V -  i [)~--j]\tiV--jl+O--Oi> _ <+o_oil ~o Eoo . I0 \ / . ^ 0 0  1 

+ <co_oil -o .oo v - ~ ,  IzL~ 
(+  o_oi i 17o _ ~o izoL ><+ 0+% 11711+ % >/(,oo _ ,oo)}  

_ ~ 0  . 0 0 1  . 1 0  \ {<+~176 s176176176 - ~ i  .z-;,,-<z'+~176176 

N 

E3, ~ = 
i 

N 
E~ = Z 

i 

N 
- Z {<+~176 ~~176176176176176 -4- <+o+o;It'~=1+%><+%1+%> 

i = ~ j  

--1 10 OO 00 I++j><Z+jlZ+i> + < + o + o i l v l z + + > < + _ j l + _ , > + < + o + O , l  ~ ,  oo ,o o, 

_ i<+ o+oi i t711 +o+o >l=. ,o,/(Eoo _ ,yo)=} 
N 

+ 2 Re ~ {<+ ~176 I V21Z~;) + <Z 1_~ If ?' - E; ~ I +~176 
i 

01 00 + <z'+~ i T ' - , i  I++;>} 
N 

- e R e  Z {<+~176 "<zbl+~176 �9 

{<Z ~i I I?' -- ,]o IZ~i > + 2 Re<+ ~176 i I r176 + <+~i  I ~31 +~176 

(B.12) 

{<+0_% i (~o  _ Eoo)31 _ o o .  . o 2 . _ o o  , _ o o .  ~, - i 2  - ~i ~ ,  - i l w - i / -  (E~ ~ 

+ 2 Re<+ ~176 [(17(~ -~i'~176 IZ-i//'~ \J2c 2 

"4- <z lOi l  ~1  - -  EO0 [zlOi> - -  ~/01 <XO+liIZ~i>} 

N O0 O0 

+ Z {1<+~176176176 ~~ + ~ ~  I<+~176 ~<+ ~' + ~  t+%>1=/c= 
i#j 2 

(B.21) 

(B.30) 

Eoo 2 _oo \J2c 2 _ <+o_o i~oo ><+oo EY~ (~ (E ~176 + + ) l ,e-,~/ -+ -Jl ~(o~_ (,oo + + 
__ O0 OO 00 1~O OO EO0 -<+~176 ~, I+-~><+-+l _~oo1+~,><+o_o1+_,>/( ' _~o) 

_ oo oo oo - , I ,~- , , , , , ;  - , ~ 1 7 6  +2Re<+~ ~~ c, I+_+><+_~I ~~ ~oo .o1,.,~oo 
N 

+ Y~ < + ~ , 1 ~ % > < + ~  I~~176176176 t7 o _ (Eoo + E oo + E2~176 

i~j#k (B.03) 
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